

Department of Mathematics and Statistics

Math 415–Number Theory Course Syllabus

<u>Course description</u>: Properties of natural numbers. Unique factorization, residue solution of congruences, arithmetic functions, quadratic reciprocity law, distribution of primes. Diophantine equations, continued fractions, algebraic numbers.

Credit hours: 3

Course Prerequisites and Corequisites: MTH 311

Course outline:		Approximate time spent
٠	Divisibility and the Congruences	20%
	 Greatest common divisor 	
	 Linear equations and the GCD 	
	 Congruences 	
	 Euler Phi function 	
	 Fermat's Little Theorem 	
	 Chinese Remainder Theorem 	
٠	Primes	25%
	 Infinitude of primes 	
	 Primes in arithmetic progressions 	
	 Distribution of primes 	
	 Special primes (Mersenne) 	
	 Primality testing 	
	• Coding	070/
Quadratic Reciprocity		25%
	Roots modulo m	
	 Square modulo a prime 	
•	Diophantine Equations	15%
	• Pythagorean triples	
	• Discussion of Fermat's Last Theorem	
	 Square and triangular numbers 	
	 Pell's Equation 	
	• Normality and factor groups	450/
•	Selected topics	15%
	 Gaussian integers Unique Festerization 	
	Onlique Factorization Continued Freetiene	
	Continueu Fractions Free Rounding	

<u>Student Learning Outcomes (SLO)</u>: At the end of MTH 415, a student who has studied and learned the material should be able to:

- 1. Recognize and be able to prove theorems about congruences, divisibility and primality. [PLO: 1,3,5]
- 2. Demonstrate understanding of the importance of Fermat's Last Theorem in the development of modern number theory. [PLO 3]
- 3. Read and understand topics in number theory, and given appropriate definitions and theorems, prove minor theorems. [PLO: 1,2,3]
- 4. Create examples and counterexamples to test the validity of a number theoretic statement. [PLO: 2,4,5]

MTH 415 – Number Theory Syllabus Continuation

Program learning Outcomes (PLO):

Students graduating from SFASU with a B.S. degree and a major in mathematics will:

- 1. Demonstrate comprehension of core mathematical concepts. [*Concepts*] (notion of theorem, mathematical proof, logical argument)
- 2. Execute mathematical procedures accurately, appropriately, and efficiently. [*Skills*] (calculus, algebra, routine, nonroutine, applied)
- 3. Apply principles of logic to develop and analyze conjectures and proofs. [Logical Reasoning] (quantifiers, breaking down mathematical statements, counterexamples)
- 4. Demonstrate competence in using various mathematical tools, including technology, to formulate, represent, and solve problems. [*Problem Solving*] (calculus tools, algebra tools, applied tools, nonstandard problem solving)
- Demonstrate proficiency in communicating mathematics in a format appropriate to expected audiences. [*Communication*] (written, visual, oral)