Course description: Linear regression, non-linear models, multiple regression.

Credit hours: 3

Course Prerequisites and Corequisites: STA 520 and MTH 317

(The following outline is subject to change and may not be in this particular order.)

Course outline:

- **Simple Linear Regression**
 - Scatterplots
 - Ordinary Least Squares Estimation
 - Normal Equations
 - Properties of Least Squares Estimators
 - Derivation of Least Squares Estimators
 - Variance Estimation
 - Model Assessment
 - Cochran's Theorem
 - F-test, t-test
 - Coefficient of Determination
 - Transformations
 - Confidence Intervals and Hypothesis Tests for
 - Slope
 - Intercept
 - Mean Response given X
 - Prediction and Prediction Intervals
 - Matrix Representation

- **Multiple Linear Regression**
 - Matrix Representation
 - Ordinary Least Squares Estimation
 - Normal Equations
 - Properties of Least Squares Estimators
 - Derivation of Least Squares Estimators
 - Variance Estimation
 - Model Assessment
 - F-test
 - Coefficient of Multiple Determination
 - Transformations
 - Confidence Intervals and Hypothesis Tests for
 - Partial Slopes
 - Intercept
 - Mean Response given X
 - Prediction and Prediction Intervals

Approximate time spent

- 20%
- 30%
STA 522 – Regression Analysis
Syllabus Continuation

- **Regression Diagnostics** 25%
 - Residual Analysis
 - Normality
 - Constant Variance
 - Independence
 - Outliers and Influential Points
 - Outlier Tests
 - Cook's Distance

- **Variable Selection** 15%
 - Multi-collinearity
 - Stepwise Regression Methods

- **Introduction to Special Topics in Regression** 10%
 - Polynomial Regression
 - Logistic Regression
 - Poisson Regression
 - Non-Linear Regression

Student Learning Outcomes (SLO): At the end of STA 522, a student who has studied and learned the material should be able to:

1. Build a simple linear regression model. [PLO: 2, 3]
2. Assess the strength and appropriateness of a simple linear regression model. [PLO: 2, 3]
3. Interpret the following of a simple linear regression model: slope, intercept, point predictions, prediction intervals, and confidence intervals. [PLO: 2,5]
4. Perform the first three bullets in the context of a multiple regression model. [PLO: 2, 3, 5]
5. Demonstrate an understanding of the least squares estimators. [PLO: 1]
6. Demonstrate an understanding of the matrix representation of a Simple or Multiple Regression Model. [PLO: 2]
7. Use residuals to check model assumptions. [PLO: 2, 3]
8. Identify outliers and influential points. [PLO: 2, 3]
9. Use transformations to successfully (if possible) meet model assumptions. [PLO: 2, 3]
10. Use a statistical computer package to build a regression model and assess its strength/appropriateness. [PLO: 2, 3, 5]

Program Learning Outcomes (PLO):

Students graduating from SFASU with an M.S. degree and a major in statistics will demonstrate:

1. A command of core probability and statistical concepts through major definitions and theorems. [Concepts] (Probability and Statistical Inference)
2. Strategic competence in formulating a standard probabilistic/statistical model for a given problem. [Modeling] (Model Choice and Model Interpretation)
3. Skill in using statistical software in order to process and interpret data. [Data Processing] (Computational Skills and Model Validation)
4. Proficiency in communicating probability and statistics in a format appropriate to expected audiences. [Communication] (Written Communication, Oral Communication)

Date of document: 04/01/2009